77 research outputs found

    Geometric integration on spheres and some interesting applications

    Get PDF
    Geometric integration theory can be employed when numerically solving ODEs or PDEs with constraints. In this paper, we present several one-step algorithms of various orders for ODEs on a collection of spheres. To demonstrate the versatility of these algorithms, we present representative calculations for reduced free rigid body motion (a conservative ODE) and a discretization of micromagnetics (a dissipative PDE). We emphasize the role of isotropy in geometric integration and link numerical integration schemes to modern differential geometry through the use of partial connection forms; this theoretical framework generalizes moving frames and connections on principal bundles to manifolds with nonfree actions.Comment: This paper appeared in prin

    Numerical integration for high order pyramidal finite elements

    Full text link
    We examine the effect of numerical integration on the convergence of high order pyramidal finite element methods. Rational functions are indispensable to the construction of pyramidal interpolants so the conventional treatment of numerical integration, which requires that the finite element approximation space is piecewise polynomial, cannot be applied. We develop an analysis that allows the finite element approximation space to include rational functions and show that despite this complication, conventional rules of thumb can still be used to select appropriate quadrature methods on pyramids. Along the way, we present a new family of high order pyramidal finite elements for each of the spaces of the de Rham complex.Comment: 28 page

    High-order finite elements on pyramids: approximation spaces, unisolvency and exactness

    Get PDF
    We present a family of high-order finite element approximation spaces on a pyramid, and associated unisolvent degrees of freedom. These spaces consist of rational basis functions. We establish conforming, exactness and polynomial approximation properties.Comment: 37 pages, 3 figures. This work was originally in one paper, then split into two; it has now been recombined into one paper, with substantial changes from both of its previous form

    Fast integral equation methods for the Laplace-Beltrami equation on the sphere

    Full text link
    Integral equation methods for solving the Laplace-Beltrami equation on the unit sphere in the presence of multiple "islands" are presented. The surface of the sphere is first mapped to a multiply-connected region in the complex plane via a stereographic projection. After discretizing the integral equation, the resulting dense linear system is solved iteratively using the fast multipole method for the 2D Coulomb potential in order to calculate the matrix-vector products. This numerical scheme requires only O(N) operations, where NN is the number of nodes in the discretization of the boundary. The performance of the method is demonstrated on several examples

    Revisiting the Jones eigenproblem in fluid-structure interaction

    Full text link
    The Jones eigenvalue problem first described by D.S. Jones in 1983 concerns unusual modes in bounded elastic bodies: time-harmonic displacements whose tractions and normal components are both identically zero on the boundary. This problem is usually associated with a lack of unique solvability for certain models of fluid-structure interaction. The boundary conditions in this problem appear, at first glance, to rule out {\it any} non-trivial modes unless the domain possesses significant geometric symmetries. Indeed, Jones modes were shown to not be possible in most C∞C^\infty domains (see article by T. Harg\'e 1990). However, we should in this paper that while the existence of Jones modes sensitively depends on the domain geometry, such modes {\it do} exist in a broad class of domains. This paper presents the first detailed theoretical and computational investigation of this eigenvalue problem in Lipschitz domains. We also analytically demonstrate Jones modes on some simple geometries

    The cellular dynamics of bone remodeling: a mathematical model

    Get PDF
    The mechanical properties of vertebrate bone are largely determined by a process which involves the complex interplay of three different cell types. This process is called {\it bone remodeling}, and occurs asynchronously at multiple sites in the mature skeleton. The cells involved are bone resorbing osteoclasts, bone matrix producing osteoblasts and mechanosensing osteocytes. These cells communicate with each other by means of autocrine and paracrine signaling factors and operate in complex entities, the so-called bone multicellular units (BMU). To investigate the BMU dynamics in silico, we develop a novel mathematical model resulting in a system of nonlinear partial differential equations with time delays. The model describes the osteoblast and osteoclast populations together with the dynamics of the key messenger molecule RANKL and its decoy receptor OPG. Scaling theory is used to address parameter sensitivity and predict the emergence of pathological remodeling regimes. The model is studied numerically in one and two space dimensions using finite difference schemes in space and explicit delay equation solvers in time. The computational results are in agreement with in vivo observations and provide new insights into the role of the RANKL/OPG pathway in the spatial regulation of bone remodeling
    • …
    corecore